Category
3 Dimensional
3D Landscape
Abstract
Aircraft / Planes
Animals
Boats
Buildings & City
Cars
Comics
Computer
Development
Digital art
Drawing & Painting
Fantasy
Female Celebrities
Games
Gothic / Dark Art
Known places
Male Celebrities
Miscellaneous
Motor
Movies
Music
Nature
Space
Sport

Popular tags
View all...

Artists
View all...

Shattered Glass


Pictures

Twitter Share
FaceBook Share
Shattered Glass (Development)
Shattered Glass (Development)
Shattered Glass (Development)
Shattered Glass (Development)
Shattered Glass (Development)
Shattered Glass (Development)
Shattered Glass (Development)
Twitter Share
FaceBook Share

Information about Shattered Glass

Glass generally refers to hard, brittle, transparent material, such as those used for windows, many bottles, or eyewear. Examples of such solid materials include, but are not limited to, soda-lime glass, borosilicate glass, acrylic glass, sugar glass, Muscovy-glass, or aluminium oxynitride. In the technical sense, glass is an inorganic product of fusion which has been cooled through the glass transition to a rigid condition without crystallizing. Many glasses contain silica as their main component and glass former.

In the scientific sense the term glass is often extended to all amorphous solids (and melts that easily form amorphous solids), including plastics, resins, or other silica-free amorphous solids. In addition, besides traditional melting techniques, any other means of preparation are considered, such as ion implantation, and the sol-gel method. However, glass science and physics commonly includes only inorganic amorphous solids, while plastics and similar organics are covered by polymer science, biology and further scientific disciplines.

Glass plays an essential role in science and industry. The optical and physical properties of glass make it suitable for applications such as flat glass, container glass, optics and optoelectronics material, laboratory equipment, thermal insulator (glass wool), reinforcement fiber (glass-reinforced plastic, glass fiber reinforced concrete), and art.

The term glass developed in the late Roman Empire. It was in the Roman glassmaking center at Trier, now in modern Germany, that the late-Latin term glesum originated, probably from a Germanic word for a transparent, lustrous substance.

Glass ingredients

Pure silica (SiO2) has a "glass melting point" at a viscosity of 10 Pas (100 P) of over 2300 C (4200 F). While pure silica can be made into glass for special applications (see fused quartz), other substances are added to common glass to simplify processing. One is sodium carbonate (Na2CO3), which lowers the melting point to about 1500 (517 years ago) C (2700 F) in soda-lime glass; "soda" refers to the original source of sodium carbonate in the soda ash obtained from certain plants. However, the soda makes the glass water soluble, which is usually undesirable, so lime (calcium oxide (CaO), generally obtained from limestone), some magnesium oxide (MgO) and aluminium oxide (Al2O3) are added to provide for a better chemical durability. The resulting glass contains about 70 to 74% silica by weight and is called a soda-lime glass. Soda-lime glasses account for about 90% of manufactured glass.

As well as soda and lime, most common glass has other ingredients added to change its properties. Lead glass, such as lead crystal or flint glass, is more 'brilliant' because the increased refractive index causes noticeably more "sparkles", while boron may be added to change the thermal and electrical properties, as in Pyrex. Adding barium also increases the refractive index. Thorium oxide gives glass a high refractive index and low dispersion, and was formerly used in producing high-quality lenses, but due to its radioactivity has been replaced by lanthanum oxide in modern eye glasses. Large amounts of iron are used in glass that absorbs infrared energy, such as heat absorbing filters for movie projectors, while cerium(IV) oxide can be used for glass that absorbs UV wavelengths (biologically damaging ionizing radiation).

Two other common glass ingredients are calumite (an iron industry by-product) and "cullet" (recycled glass). The recycled glass saves on raw materials and energy. However, impurities in the cullet can lead to product and equipment failure.

Finally, fining agents such as sodium sulfate, sodium chloride, or antimony oxide are added to reduce the bubble content in the glass. Glass batch calculation is the method by which the correct raw material mixture is determined to achieve the desired glass composition.

Contemporary glass production

Following the glass batch preparation and mixing, the raw materials are transported to the furnace. Soda-lime glass for mass production is melted in gas fired units. Smaller scale furnaces for specialty glasses include electric melters, pot furnaces, and day tanks.

After melting, homogenization and refining (removal of bubbles), the glass is formed. Flat glass for windows and similar applications is formed by the float glass process, developed between 1953 (64 years ago) and 1957 (60 years ago) by Sir Alastair Pilkington and Kenneth Bickerstaff of the UK's Pilkington Brothers, who created a continuous ribbon of glass using a molten tin bath on which the molten glass flows unhindered under the influence of gravity. The top surface of the glass is subjected to nitrogen under pressure to obtain a polished finish. Container glass for common bottles and jars is formed by blowing and pressing methods. Further glass forming techniques are summarized in the table Glass forming techniques.

Once the desired form is obtained, glass is usually annealed for the removal of stresses. Surface treatments, coatings or lamination may follow to improve the chemical durability (glass container coatings, glass container internal treatment), strength (toughened glass, bulletproof glass, windshields), or optical properties (insulated glazing, anti-reflective coating).

Glassmaking in the laboratory

New chemical glass compositions or new treatment techniques can be initially investigated in small-scale laboratory experiments. The raw materials for laboratory-scale glass melts are often different from those used in mass production because the cost factor has a low priority. In the laboratory mostly pure chemicals are used. Care must be taken that the raw materials have not reacted with moisture or other chemicals in the environment (such as alkali oxides and hydroxides, alkaline earth oxides and hydroxides, or boron oxide), or that the impurities are quantified (loss on ignition). Evaporation losses during glass melting should be considered during the selection of the raw materials, e.g., sodium selenite may be preferred over easily evaporating SeO2. Also, more readily reacting raw materials may be preferred over relatively inert ones, such as Al(OH)3 over Al2O3. Usually, the melts are carried out in platinum crucibles to reduce contamination from the crucible material. Glass homogeneity is achieved by homogenizing the raw materials mixture (glass batch), by stirring the melt, and by crushing and re-melting the first melt. The obtained glass is usually annealed to prevent breakage during processing.

In order to make glass from materials with poor glass forming tendencies, novel techniques are used to increase cooling rate, or reduce crystal nucleation triggers. Examples of these techniques include aerodynamic levitation (the melt is cooled whilst floating in a gas stream), splat quenching, (the melt is pressed between two metal anvils) and roller quenching (the melt is poured through rollers).

Source: en.wikipedia.org


External links to Shattered Glass

AddAdd a new link




These wallpapers are free for personal use on computer screens only.
Images belong to their respective copyright holders.
They may not be redistributed, offered for sale, included on CDs, or used for printed material.
For more info read Privacy Policy
MoneyDonate
RSSRSS Feeds
PromotePromote WW
UploadUpload a new wallpaper
TwitterNewsletter
Free wallpaper as start page
 Sitemap | Contact Us